The Juneau Icefield: Sub-Surface Exploration

Kit Cunningham, Montana State University
Annie Zaccarin, University of California, San Diego

As the sun warmed the rocks and the clouds drifted away from Camp 18, the biogeochemistry research group skied up and away from camp. The weather was pleasant. A glacial breeze cooled us as we gleefully kicked and glided our way across the icefield towards the Matthes-Llewellyn divide. The divide is a topographic high between the two glaciers, from which point the ice flows downhill and away in both directions. Our research group aimed to gather snow samples from the past years’ snowpack on the Llewellyn Glacier to analyze in a lab.

We arrived at our location, roughly halfway between the two sides of the Llewellyn Glacier, on a relatively flat area downhill of the divide. Enthusiastic to start working, we kicked off our skis and set up our work area amid the ever glorious snow and mountain peaks surrounding us. The first step was to dig a trench roughly 1.5 m by 3 m, and 1 m deep. We used the excavated snow to build a shade wall on the south side of the work area, protecting sensitive samples from the sun. This trench and wall created our main workstation, a sort of subterranean workbench where we could comfortably stand and use the top of the snowpack as a waist-high counter top. After this our team prepared to gather snow samples by pulling up snow cores from the depths of the snow beneath our feet, just to the side of the trench. We all picked a job to start at on our snow core assembly line and enthusiastically got ready for a day of collecting samples.

The snow core assembly starts with gathering the snow core itself. This consisted of 3 main parts: the snow corer, the flights, and the handle. The snow corer is a tube about 1.5 m long, with plastic threads down the outside connecting to sharp teeth, and metal latches in the inside, also known as ‘dogs’ (Fig. 1). The snow corer acts like a hollow screw, with the plastic threads on the side helping to guide it straight downward as the sharp teeth cut into the snow. The metal latches are at the inside bottom of the tube, which prevent the snow core from sliding out when the snow core is brought to the surface.
 

Figure 1. Image of the bottom of a snow corer. Photo Credit: Kovacs Enterprise; Ice Drilling and Core Equipment

Figure 1. Image of the bottom of a snow corer. Photo Credit: Kovacs Enterprise; Ice Drilling and Core Equipment

A flight, the second section of the set up, is a meter-long attachment to the handle. It is meant to increase the depth of the coring hole. Basically, once the snow corer is deeper than its own height (1.5 m), we need additional attachments in able to retrieve it. A flight is one meter long, so if the snow core hole is 10 m deep, we need to attach 10 flights to the handle to drill and recover the core. The last piece of the snow corer set up is the handle. This is where all the power comes from, with our own arm strength. We operate the drill by turning the T-shaped handle, slowly spinning the whole apparatus and drilling the corer deep into the snow.

Caption: Kit Cunningham and Chris Miele adding flights to the drill (partly lowered in the hole). Photo credit: Sarah Fortner

Caption: Kit Cunningham and Chris Miele adding flights to the drill (partly lowered in the hole). Photo credit: Sarah Fortner

Once the snow corer is set up, we began the core extraction. I started out at the beginning of the assembly line, pulling the snow core out of the hole; which in my opinion is the most fun job. Using the snow core assembly, I pulled out our first segment of snow and slid it out of the snow corer and onto our workbench. Since extra snow shavings, or filings, from the threads of the snow corer can gather on top of the snow core sample itself, we measured both the depth of the hole and the length of the snow core and compared the measurements. If the snow core sample was longer than the depth of the hole, we removed the excess snow (filings from the side and top of the hole). As the snow core assembly went deeper, more filings got into the core, and this discrepancy increased. After we matched our snow core sample to the depth of the hole, the next two people in the assembly line, the snow core sawer, cut the snow core into 10 cm segments. We treated each of these 10 cm segments as individual samples. We measured the top and bottom diameters and the mass of each segment using a field scale, so that we could calculate the density of the sample later. The next person in the assembly line, the master note keeper, carefully recorded all these measurements. The master note keeper also kept track of any ice lenses, layers of ice within the snow core, in each sample. The master note keeper handed off the baggie holding the snow core segment to yet another member of the assembly line, the snow core pulverizer. The snow core pulverizer had perhaps the most entertaining job, breaking the snow core up into tiny little pieces. Accomplished via fist pounding and sometimes the use of a hammer, the goal is to break up and mix all of the snow core segment particles together, to make them as uniform in size as possible. Because we did not have enough sample bottles, or helicopter space, to carry out the entire snow core, we filled two sample bottles with the pulverized snow from each 10 cm segment. Pulverizing the segment helps ensure that the snow core pieces bottled are representative of the entire 10cm segment and not just the top or bottom part. Last, but not least of our tasks, the bottle labeler was responsible for marking all the sample bottles with the core segment label, so that back at the lab everyone knows which bottle goes with which part of the snow core.

Caption: Field staffer Matt Pickart and faculty member Natalie Kehrwald measure the snow core section, camouflaged on the snow workbench. Biogeochemistry students Molly Peek, Annie Holt, and faculty member Sarah Fortner bottle and label samples in t…

Caption: Field staffer Matt Pickart and faculty member Natalie Kehrwald measure the snow core section, camouflaged on the snow workbench. Biogeochemistry students Molly Peek, Annie Holt, and faculty member Sarah Fortner bottle and label samples in the background.
Photo credit: Annie Zaccarin.

These snow cores will travel, from our backpacks, hundreds of miles via helicopter, car, and airplane to get to a laboratory to be tested for inclusions. These inclusions will function as proxies for different characteristics and changes occurring on the Icefield. The inclusions we will be testing for are isotopes, major ion content, snow density, levoglucosan (which is a chemical produced through burning plant biomass), and dust particles. Through these five things, we will be able to understand changing precipitation and wind patterns, temperature fluxes, types of rock surrounding the glaciers, and the quantity of forest fires in the area and if they are affecting the Icefield melt. Independently, each test is a little clue about the Icefield health and together it can make a more encompassing picture.

The Juneau Icefield is the fifth largest Icefield in the western hemisphere and determining whether changes are occurring, such as increased precipitation or ash deposits, are important factors in hypothesizing its present and future melt patterns. Since these cores can go back approximately 3-5 years depending on depth, we can compare this year’s annual melt, precipitation, and wind data to previous year’s data as a way to put current changes into perspective. Through these little microscopic changes in the snow, we can gain huge amounts of information on the Icefield's present and future health. And this whole process starts with a group of excited students enjoying the day and stuffing snow inside small bottles.

This brings us back to our makeshift conveyor belt of snow chunks, and what marked the end of the day’s sample collection. Our snow core reached an impressive 9.2 meters depth, which contains snow dating back 3-4 years. We packed the hundreds of sample bottles away into our bags, ready to be carry them back to camp. After taking off a layer and grabbing a quick snack, we all put on our skis and started the long trek back to camp for supper. We gazed at the tall, mountainous beauty of the Storm Range, hypothesized about what might be cooking for supper, and reflected on how lucky we are to learn science in a place as wonderful as the Juneau Icefield.

To learn more about the potential links between snow cores and forest fires, take a listen to this podcast by Elizabeth Jenkins about our group’s snow coring on the icefield.

The JIRP 2017 Biogeochemistry team at Camp 18. From left to right: Kiana Ziola, Dr. Sarah Fortner, Auri Clark, Molly Peek, Annie Zaccarin, Kit Cunningham, Annie Holt, Chris Miele and Dr. Natalie Kehrwald.

The JIRP 2017 Biogeochemistry team at Camp 18. From left to right: Kiana Ziola, Dr. Sarah Fortner, Auri Clark, Molly Peek, Annie Zaccarin, Kit Cunningham, Annie Holt, Chris Miele and Dr. Natalie Kehrwald.

 

 

JIRP 2016 - Success at AGU

Matt Beedle

JIRP Director of Academics and Research

As we work through the application materials for JIRP's prospective 2017 cohort (amazing applicants, by the way!), I'm reminiscing on this process from a year ago and the phenomenal JIRP class of 2016. JIRP, of course, is a research program, an educational expedition. The more years I'm involved in JIRP, however, the more I realize that it is the community of JIRP that is transformative. In the words of Dr. Maynard Miller, reflecting on why he was so drawn to the program he helped shape and led for decades:

I can’t get away, because you’re all so wonderful!

After completing the summer field season, the 2016 cohort went their separate ways, but continued their summer research, building towards the American Geophysical Union's Fall Meeting in early December where they presented their work. Half of our 2016 cohort of 32 made the trek to San Francisco to present, expand their scientific understanding and connections, and enjoy a number of gatherings with JIRP alumni and faculty. Engaging once again with this talented group of young scientists, introducing them to the larger JIRP family of alumni and faculty, and helping them make connections on their career paths was a real highlight of AGU 2016. The JIRP team is proud of your work and we are excited to build upon these efforts with JIRP's 2017 students!

Please see the images and text below for a team-by-team synopsis of student research presented at the 2016 AGU Fall Meeting:

BIOGEOCHEMISTRY: Team members Annie Holt, Annie Zaccarin, Auri Clark and Molly Peek (left to right in image below), present their group's work.

Abstract: Previous work has characterized chemical weathering in polar, polythermal, and alpine settings. However, chemical weathering and the role of supraglacial streams within the carbon cycle on the Juneau Icefield glacial system is not well documented. This study examines the concentration and spatial variability of alkalinity and major ions present in the ablation zone of the Llewellyn glacier, which is on the northeast side of the Icefield in Canada.

In particular, we explore how differences in chemistry are associated with source area reflectivity. By conducting measurements to characterize melt chemistry and alkalinity, we present results of a spatial variation survey of the Llewellyn Glacier ablation zone and relate the findings to surface albedo. We sample 30 locations in August 2016 during the late ablation season using a Hach digital titrator, ion chromatograph and an albedometer to measure alkalinity, major ion concentrations and albedo respectively. We characterize the relation between alkalinity concentrations and dust patterns and compare our data to other glacial systems. This study contributes to the larger understanding of chemical weathering in glacial environments.


BOTANY/ECOLOGY: Deirdre Collins presents her team's work.

Abstract: Alpine environments are particularly vulnerable to climate change, and alpine plant populations of the Juneau Icefield are currently experiencing increased environmental stress. In this study, vascular plants on selected nunataks of the Juneau Icefield of the Coast Range Mountains are investigated. Sixty meter transects spanning an elevation range are collected along prominently vegetated portions of each study site. The population of vascular plants found is considered in relation to the nunatak soil microbiota, elevation, latitude, nunatak emergence and geology. Results indicate previously unknown variations in nunatak soil microbiota and provide baseline data that may be used for future studies.


GEOPHYSICS: Tae Hamm, Dr. Kiya Riverman and DJ Jarrin present the geophysics team's 2016 research.

Abstract: High resolution measurements of spatial ice thickness variability on the Juneau Icefield are critical to an understanding of current glacial dynamics in the Coast Mountains of Southeast Alaska. In particular, such data are lacking on the Taku Glacier, a tidewater glacier in the Juneau region whose unique advance has slowed in recent years.

Significantly, such information is necessary to develop an accurate description of ice dynamics as well as sub-surface hydrology and bedrock erosion. Utilizing relative gravimetry, we sought to modify existing parameterized models of ice thickness with field measurements taken along the centerline of the Taku. Here we present a three-dimensional representation of ice thickness for the Taku, based on in situ observations from July 2016. As the glacier approaches a potential period of rapid terminal retreat, this data gives refined physical information prior to this potential juncture in the tidewater cycle-an observation that may yield insight into marine ice sheet instabilities more broadly.


GPS SURVEY: Brittany Ooman (with the assistance of DJ Jarrin) presents the survey team's work from 2016.

Abstract: Glaciers are retreating at unprecedented rates worldwide, but the Taku Glacier in Southeast Alaska underwent a recent advance. As part of the Juneau Icefield Research Program, glacier surface elevation and short-term velocity are measured annually during the summer season along longitudinal and transverse profiles using a real time kinematic global positioning system (GPS).

We compared our survey results from 2016 to those of recent decades to determine changes in surface elevation and velocity over time. The observed changes are discussed in relation to the available bed topography data. In addition, we generated a detailed surface model and measured the pattern of local surface flow to constrain the location of the Matthes-Llewellyn divide, and determine if it is migrating through time. The results will help us understand the evolving dynamics of Taku glacier.


ISOTOPE GEOCHEMISTRY: Cezy Semnacher and Mo Michels present the 2016 efforts of the JIRP isotope team.

Abstract: The glaciers and climate of Southeast Alaska are currently changing, and the water isotopic record stored within these glaciers can act as an informant of this variability. Toward this end, it is necessary to understand the modern relationship between environmental factors and the patterns of water isotope variability. In this study, we present a spatio-temporal survey of water isotopes in precipitation on the Juneau Icefield of Southeast Alaska, carried out through the Juneau Icefield Research Program during the summer of 2016.

Samples were collected from 75 kilometers of surface transects, seven pits, and three cores of the annual snow pack, including repeat measurements to test for isotopic alteration from rainfall events. Measurements span three glaciers, a range of elevations, and multiple climate zones. Results, including those from annually repeated surface transects, were compared to data collected in the summers of 2012 and 2015.

Data from 2015 show an icefield-wide trend between δ18O values and elevation. However, a locally reversed trend was identified across the Taku Glacier. The data collected from this study will help to explain this unexpected result. Comparisons are made to other environmental factors including annual average temperature, distance from the coast, and the influence of different weather patterns.

Understanding the spatial and temporal patterns of isotopes across the Juneau Icefield will allow for a deeper understanding of the local relationship between these tracers and climate. This understanding is critical to interpreting water isotopes as a proxy for climate changes in the past.


MASS BALANCE: Dr. Shad O'Neel, Kate Bollen, Olivia Truax, Evan Koncewicz, Tai Rovzar and Alex Burkhart present the mass balance team's 2016 research.

Abstract: The Juneau Icefield Research Program has collected mass balance data over the last 70 years on the Taku and Lemon Creek glaciers. We analyze data from 2004-2016 to investigate the interannual variability in the accumulation gradients of these two glaciers from ground penetrating radar (GPR), probing, and snow pits. Understanding interannual variability of accumulation gradients on the Juneau Icefield will help us to interpret its long-term mass balance record.

The Lemon Creek Glacier is a small valley glacier on the southwest edge of the Icefield. GPR data was collected over the glacier surface in March 2015 and 2016. In July of 2014 and 2016, the accumulation area was probed for snow depth, and two snow pits were dug for snow depth and density. The accumulation gradients resulting from each method are compared between years to assess the interannnual variability of the accumulation gradient and the resulting glacier wide mass balance.

The Taku Glacier is the largest outlet glacier on the Juneau Icefield. We use three snow pits dug each year along the longitudinal profile of the glacier between ~1000m and ~1115m, the region that typically reflects the ELA. In 2004, 2005, 2010, 2011, and 2016, snow probing was continued in the central region of the Taku and the resulting gradients are compared to each other and to the gradients derived from the snow pits. We assess the resulting impact on glacier wide mass balance furthering our understanding of the state of these two well-monitored glaciers on the Juneau Icefield.


PLANNING FOR 2017: We are excited to build upon these research efforts and also expand in new and exciting research directions. Stay tuned for more information on our 2017 season in the coming weeks!

A portion of the JIRP crew at the 2016 AGU Fall Meeting gathers for dinner after a day of science in San Francisco.Back row: Annie Zaccarin, Annie Holt, Olivia Truax, Evan Koncewicz, Kate Bollen, Molly Peek, Deirdre Collins, Matt Beedle, ????, Brad …

A portion of the JIRP crew at the 2016 AGU Fall Meeting gathers for dinner after a day of science in San Francisco.

Back row: Annie Zaccarin, Annie Holt, Olivia Truax, Evan Koncewicz, Kate Bollen, Molly Peek, Deirdre Collins, Matt Beedle, ????, Brad Markle, Tai Rovzar. Front row: DJ Jarrin, Cezy Semnacher, Chris McNeil

Unexpected Biogeochemistry Results, and How They Were Surprisingly Helpful

Molly Peek

Smith College

Sometimes, in field science, things do not go as planned, and you just have to make the best of it. While this is true for all of life at JIRP, this year’s biogeochemistry group received special lessons in planning and adaptation.

This was the first year of the biogeochemistry student research project (BGC for short); we needed to start with an exploratory study. With no prior fieldwork done in the area, we relied on related research to begin our study characterizing the chemistry of supraglacial streams in the ablation zone of the Llewellyn Glacier. Supraglacial streams are melt water streams that run along the top of exposed ice in glacier melt zones. Nutrients from nearby nunataks are blown onto the ice, where supraglacial streams transport them across the glacier, and eventually off the end of the glacier into the downstream fluvial system. We decided to focus our project on alkalinity, which is dissolved inorganic carbon, or bicarbonate, in the water. Bicarbonate can be weathered off rocks through water, and thus is a good starting point in characterizing the chemical makeup of water.

Team BGC crosses from the nunataks to the blue ice of the ablation zone for a day of fieldwork. Photo credit: Auri Clark

Team BGC crosses from the nunataks to the blue ice of the ablation zone for a day of fieldwork. Photo credit: Auri Clark

Team BGC headed down to the blue ice of the Llewellyn Glacier and Camp 26 to investigate alkalinity in the supraglacial streams carving the ice, armed with our relevant literature and our alkalinity titrator (a devise used to measure the concentration of bicarbonate in our water samples). After a long traverse over thin snow and a tricky crevasse field, we arrived to Camp 26 on the Llewellyn ready to take alkalinity measurements on 30 melt water streams. Using clean water sampling strategies, we donned plastic gloves and filled plenty of bottles to bring back to camp for titration, as well as recording measurements and observations on the character of the stream.

Chris Miele measures the dimensions of a supraglacial stream on the Llewellyn Glacier. Photo credit: Annie Zaccarin

Chris Miele measures the dimensions of a supraglacial stream on the Llewellyn Glacier. Photo credit: Annie Zaccarin

Back at camp with fresh samples, we excitedly began titration to test for bicarbonate. To titrate, we added a dark green indicator base to the water sample, followed by drops of acid that react to the base, turning the water bright pink. The number of drops of acid required to turn the water a vibrant pink indicates the alkalinity of the water—the more drops we needed to add, the more alkalinity in the water.

Based on previous research on similar glaciers and the nature of the Llewellyn’s geology, our group expected to find significant amounts of alkalinity in supraglacial streams, especially in those streams with visible debris along their beds.

So, where was all this alkalinity? Adding acid to our samples, we consistently found it only in low levels, with the water turning boldly pink after fewer than 10 drops of the acid, indicating our samples would have bigger error bars.

Did we do something wrong? Checking over our work, we realized that, no, we had done the process correctly; we just had results that were completely unexpected. What now?

We had committed a fatal flaw in science: becoming married to a hypothesis! What can I say, we were excited. Our first response was to laugh for a little while in some frustration, and then we decided to take this as a lesson, but make it a fun one in the end.

A supraglacial stream running over the blue the ice, which our testing showed carries surprisingly low levels of alkalinity. Photo credit: Auri Clark

A supraglacial stream running over the blue the ice, which our testing showed carries surprisingly low levels of alkalinity. Photo credit: Auri Clark

If we didn’t find alkalinity where we predicted, we wondered if we would find it anywhere else. As a group, we decided to use our extra bottles to collect samples from other places around Camp 26 and on our hike off the icefield. We collected water from basal streams found in ice caves and coming out near the terminus of Llewellyn Glacier, and at the Llewellyn Inlet on Atlin Lake.

A meltwater stream running over rock debris near the terminus of the Llewellyn Glacier. Although sampling this stream wasn’t part of our initial fieldwork plan, it proved to have high levels of alkalinity. Photo credit: Auri Clark

A meltwater stream running over rock debris near the terminus of the Llewellyn Glacier. Although sampling this stream wasn’t part of our initial fieldwork plan, it proved to have high levels of alkalinity. Photo credit: Auri Clark

Finally in Atlin, we broke open the alkalinity titrator kit for one final hurrah to test these “fun” (or, more professionally, “exploratory”) samples. Observing the water as we collected samples, most of these sites were more turbid, or cloudy with dissolved particles, than the supraglacial streams had been: a good sign for finding alkalinity derived from bedrock weathering. We added our indicator dye, and apprehensively began to add drops of acid. We started slowly, but became more excited as they passed the statistically significant threshold – we had found alkalinity!

Testing these samples was exciting purely because we found the results we had set our hearts on earlier. Even though we know this is a dangerous trap in which to fall in science, as this experiment proved, it was satisfying to find the sought-after alkalinity. Beyond that, though, these samples allowed us to ask more questions about our study, which we consider a successful outcome in an exploratory study.

Why was there far more alkalinity found in basal streams than in supraglacial streams? Where did the alkalinity in the basal streams come from? How do we characterize the supraglacial streams, knowing they have little bicarbonate? How does this differ from basal streams?

All in all, this year’s biogeochemistry project was a lesson in flexibility. When the route through the crevasse field doesn’t work, try again. When your hypothesis gets a little fuzzy, ask why. A ‘null result’ is still a result, and it allows us to build off the unexpected and ask new questions.